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An autoregressive-moving average model in which all roots of the
autoregressive polynomial are reciprocals of roots of the moving aver-
age polynomial and vice versa is called an all-pass time series model.
All-pass models are useful for identifying and modeling noncausal and
noninvertible autoregressive-moving average processes. We establish
asymptotic normality and consistency for rank-based estimators of
all-pass model parameters. The estimators are obtained by minimiz-
ing the rank-based residual dispersion function given by Jaeckel [Ann.

Math. Statist. 43 (1972) 1449–1458]. These estimators can have the
same asymptotic efficiency as maximum likelihood estimators and are
robust. The behavior of the estimators for finite samples is studied
via simulation and rank estimation is used in the deconvolution of a
simulated water gun seismogram.

1. Introduction. Autoregressive-moving average (ARMA) models, the
standard linear time series models for stationary data, are often fit to ob-
served series using Gaussian likelihood, least-squares, or related second-order
moment estimation techniques. These are effective methods for finding fitted
ARMA models with second-order moment properties that resemble those of
an observed series, whether or not the data are Gaussian. However, because
every Gaussian ARMA process has a causal, invertible ARMA representa-
tion (all roots of the autoregressive and moving average polynomials are
outside the unit circle), in the non-Gaussian case, the second-order methods
are unable to identify a noncausal (at least one root of the autoregressive
polynomial is inside the unit circle) or noninvertible (at least one root of
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the moving average polynomial is inside the unit circle) ARMA series. Fit-
ted ARMA models obtained using second-order techniques may not, there-
fore, most effectively capture the higher-order moment structure of the data.
Consequently, an effort to identify noncausal and noninvertible series should
be part of any ARMA fitting procedure. In this paper, we discuss all-pass
models, which are useful tools for identifying and modeling noncausal and
noninvertible ARMA processes.

All-pass models are ARMA models in which the roots of the autoregres-
sive polynomial are reciprocals of roots of the moving average polynomial
and vice versa. These models generate uncorrelated (white noise) time series
that are not independent in the non-Gaussian case. As discussed in [2], an
all-pass series can be obtained by fitting a causal, invertible ARMA model
to a series generated by a causal, noninvertible ARMA model. The residu-
als follow an all-pass model of order r, where r is the number of roots of
the true moving average polynomial inside the unit circle. Consequently, by
identifying the all-pass order of the residuals, the order of noninvertibility
of the ARMA model can be determined without considering all possible
configurations of roots inside and outside the unit circle, which is compu-
tationally prohibitive for large-order models. Noninvertible ARMA models
have appeared, for example, in vocal tract filters [8, 9], in the analysis of
unemployment rates [13] and in seismogram deconvolution [2, 19]. All-pass
models can be used similarly to fit noncausal ARMA models [6]. See [6] for
a list of applications for noncausal models.

Estimation methods based on second-order moment techniques cannot
identify all-pass models because Gaussian all-pass series are independent.
Thus, cumulant-based estimators, using cumulants of order greater than
two, are often used to estimate these models [8, 9, 11]. Breidt, Davis and
Trindade [6] consider a least absolute deviations (LAD) estimation approach
which is motivated by the likelihood of an all-pass model with Laplace (two-
sided exponential) noise, and Andrews, Davis and Breidt [2] consider a max-
imum likelihood (ML) estimation approach. The LAD and ML estimators
are consistent and asymptotically normal. However, the LAD estimation
procedure is limited by the assumption that the mean and median for the
noise are equivalent, and the ML procedure is limited by the assumption
that the probability density function for the noise is symmetric and known
to within some parameter values.

In this paper, we consider a rank-based estimation technique first pro-
posed by Jaeckel [14] for estimating linear regression parameters. Jaeckel’s
estimator minimizes the sum of model residuals weighted by a function of
residual rank. We study the asymptotic properties of Jaeckel’s rank (R)
estimator in the case of all-pass parameter estimation. This R-estimator is
more robust than the LAD and ML estimators; it is consistent and asymptot-
ically normal under less stringent conditions. In addition, when R-estimation
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is used in lieu of LAD or ML, efficiency need not be sacrificed. There ex-
ists a weight function for which R-estimation is asymptotically equivalent
to LAD estimation and, when the noise distribution is known, the weight
function can be chosen so that R-estimation is asymptotically equivalent to
ML estimation. We also find that when the Wilcoxon weight function (a
linear weight function) is used, R-estimation is (relatively) very efficient for
a large class of noise distributions. Another advantage of R-estimation is
that one has the flexibility to choose a weight function that tends to pro-
duce relatively smooth R-objective functions which can be minimized fairly
easily.

Because the objective function for Jaeckel’s R-estimation method involves
not only the residual ranks, but also the residual values, this is not pure
R-estimation. Koul and Ossiander [16], Koul and Saleh [17], Mukherjee
and Bai [20] and Terpstra, McKean and Naranjo [23] consider related rank-
based estimation approaches for autoregressive model parameters. Also, Al-
lal, Kaaouachi and Paindaveine [1] examine a pure R-estimator for ARMA
model parameters based on correlations of weighted residual ranks. The re-
sults for this pure R-estimator are not applicable to all-pass model parame-
ters because the parameters in the autoregressive polynomial of an all-pass
model are functions of parameters in the moving average polynomial and
vice versa.

In Section 2 we consider Jaeckel’s R-function in the context of all-pass
parameter estimation. Asymptotic normality for R-estimators is established
under mild conditions and order selection is discussed in Section 3. Proofs
of the lemmas used to establish the results of Section 3 can be found in the
Appendix. We study the behavior of the estimators for finite samples via
simulation in Section 4.1 and use R-estimation in the deconvolution of a
simulated water gun seismogram in Section 4.2.

2. Preliminaries.

2.1. All-pass models. Let B denote the backshift operator (BkXt =Xt−k,
k = 0,±1,±2, . . .) and let φ(z) = 1 − φ1z − · · · − φpz

p be a pth order au-
toregressive polynomial, where φ(z) 6= 0 for |z| = 1. The filter φ(B) is said
to be causal if all the roots of φ(z) are outside the unit circle in the com-
plex plane. In this case, for a sequence {Wt}, φ−1(B)Wt = (

∑∞
j=0ψjB

j)Wt =
∑∞

j=0ψjWt−j , a function of only the past and present {Wt}. If φ(B) is causal,

then the filter Bpφ(B−1) is purely noncausal and hence B−pφ−1(B−1)Wt =
(
∑∞

j=0ψjB
−p−j)Wt =

∑∞
j=0ψjWt+p+j, a function of only the present and

future {Wt}. See, for example, Chapter 3 of [7].
Let φ0(z) = 1 − φ01z − · · · − φ0pz

p, where φ0(z) 6= 0 for |z| ≤ 1. Define
φ00 = 1 and r = max{0 ≤ j ≤ p :φ0j 6= 0}. Then a causal all-pass time series
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is the ARMA series {Xt} which satisfies the difference equations

φ0(B)Xt =
Brφ0(B

−1)

−φ0r
Z∗

t(2.1)

or

Xt−φ01Xt−1−· · ·−φ0rXt−r = Z∗
t +

φ0,r−1

φ0r
Z∗

t−1+ · · ·+ φ01

φ0r
Z∗

t−r+1−
1

φ0r
Z∗

t−r,

where the series {Z∗
t } is an independent and identically distributed (i.i.d.)

sequence of random variables with mean 0, variance σ2 ∈ (0,∞) and distri-
bution function F . The true order of the all-pass model is r (0 ≤ r ≤ p).
Observe that the roots of the autoregressive polynomial φ0(z) are recipro-
cals of the roots of the moving average polynomial −φ−1

0r z
rφ0(z

−1) and vice
versa.

The spectral density for {Xt} in (2.1) is

|e−irω|2|φ0(e
iω)|2

φ2
0r|φ0(e−iω)|2

σ2

2π
=

σ2

φ2
0r2π

,

which is constant for ω ∈ [−π,π]. Thus, {Xt} is an uncorrelated sequence.
In the case of Gaussian {Z∗

t }, this implies that {Xt} is i.i.d. N(0, σ2φ−2
0r ),

but independence does not hold in the non-Gaussian case if r ≥ 1 (see [5]).
The model (2.1) is called all-pass because the power transfer function of the
all-pass filter passes all the power for every frequency in the spectrum. In
other words, an all-pass filter does not change the distribution of power over
the spectrum.

We can express (2.1) as

φ0(B)Xt =
Bpφ0(B

−1)

−φ0r
Zt,(2.2)

where {Zt}= {Z∗
t+p−r} is an i.i.d. sequence of random variables with mean

0, variance σ2 and distribution function F . Rearranging (2.2) and setting
zt = φ−1

0r Zt, we have the backward recursion zt−p = φ01zt−p+1 + · · ·+φ0pzt −
(Xt − φ01Xt−1 − · · · − φ0pXt−p). An analogous recursion for an arbitrary,
causal autoregressive polynomial φ(z) = 1− φ1z− · · · − φpz

p can be defined
as

zt−p(φ) =







0, t= n+ p, . . . , n+ 1,
φ1zt−p+1(φ) + · · ·+ φpzt(φ)− φ(B)Xt,

t= n, . . . , p+ 1,
(2.3)

where φ := (φ1, . . . , φp)
′. Let φ0 = (φ01, . . . , φ0p)

′ = (φ01, . . . , φ0r,0, . . . ,0)
′ de-

note the true parameter vector and note that {zt(φ0)}n−p
t=1 closely approx-

imates {zt}n−p
t=1 ; the error is due to the initialization with zeros. Although

{zt} is i.i.d., {zt(φ0)}n−p
t=1 is not i.i.d. if r ≥ 1.
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2.2. Jaeckel ’s rank function. Suppose we have a realization of length n,
{Xt}n

t=1, from (2.1). Let λ be a function from (0,1) to R such that

A1. λ is strictly increasing and λ(s) = −λ(1− s) for all s ∈ (0,1).

If φ forms a causal pth order autoregressive polynomial and {Rt(φ)}n−p
t=1

contains the ranks of {zt(φ)}n−p
t=1 from (2.3), then the R-function evaluated

at φ with weight function λ is

D(φ) :=
n−p
∑

t=1

λ

(

Rt(φ)

n− p+ 1

)

zt(φ).(2.4)

Because it tends to be near zero when the elements of {zt(φ)} are sim-
ilar, (2.4) is a measure of the dispersion of the residuals {zt(φ)}. When
{z(t)(φ)}n−p

t=1 is the series {zt(φ)}n−p
t=1 ordered from smallest to largest, (2.4)

can also be written as D(φ) =
∑n−p

t=1 λ(t/(n − p + 1))z(t)(φ). A popular
choice for the weight function is λ(s) = s − 1/2. In this case, the weights
{λ(t/(n− p+ 1))}n−p

t=1 are known as Wilcoxon scores.
We give some properties for D in the following theorem. Jaeckel [14] shows

that the same properties hold for the R-function in the linear regression case.

Theorem 2.1. Assume A1 holds. For any φ ∈ R
p, if

{P1(φ), . . . , P(n−p)!(φ)}
= {{z1,1(φ), . . . , z1,n−p(φ)}, . . . ,{z(n−p)!,1(φ), . . . , z(n−p)!,n−p(φ)}}

contains the (n− p)! permutations of the sequence {zt(φ)}n−p
t=1 , then

D(φ) = sup
j∈{1,...,(n−p)!}

n−p
∑

t=1

λ

(

t

n− p+ 1

)

zj,t(φ).

In addition, D is a nonnegative, continuous function on R
p, and D(φ) = 0

if and only if the elements of {zt(φ)}n−p
t=1 are all equal.

Proof. See the proof of Theorem 1 in [14]. �

3. Asymptotic results.

3.1. Parameter estimation. In order to establish asymptotic normality
for R-estimators of φ0, we make the following additional assumptions:

A2. F , the distribution function for the noise, is strictly increasing and
differentiable on R with density f ;

A3. f is uniformly continuous on R with sups∈R |s|f(s)<∞;
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A4. the derivative of the weight function λ exists and is uniformly continu-
ous on (0,1).

Also, let J̃ =
∫ 1
0 λ

2(s)ds, K̃ =
∫ 1
0 F

−1(s)λ(s)ds and L̃ =
∫ 1
0 f(F−1(s)) ×

λ′(s)ds and assume

A5. σ2L̃ > K̃.

Theorem 3.1. If A1–A5 hold, then there exists a sequence of minimiz-

ers φ̂R of D(·) in (2.4) such that

n1/2(φ̂R −φ0)
d→Y ∼ N(0,Σ),(3.1)

where Σ := (σ2J̃ − K̃2)/[2(σ2L̃− K̃)2]σ2
Γ
−1
p , Γp := [γ(j − k)]pj,k=1 and γ(·)

is the autocovariance function for the autoregressive process {(1/φ0(B))Zt}.

Proof. D(φ) − D(φ0) = Sn(
√
n(φ − φ0)), where Sn(·) is defined in

Lemma A.5 of the Appendix. Because Y := −|φ0r|σ2
Γ
−1
p N/[2(σ2L̃ − K̃)]

minimizes the limit S(·) in Lemma A.5, the result follows by Remark 1
in [10]. �

Remark 1. R-estimators of linear regression parameters are also con-
sistent and asymptotically normal [14]. Note, however, that the conditions
placed on λ in assumption A4 are slightly stronger than those placed on the
weight function in [14], where the weight function is square integrable, not
necessarily bounded or continuous. The conditions in A4 can be relaxed to
some extent at the expense of stronger assumptions on f , but we do not pur-
sue those extensions here. Since piecewise continuous and unbounded weight
functions on (0,1) can be well approximated by differentiable, bounded
weight functions, from a practical perspective, assumption A4 is not overly
restrictive.

Remark 2. Using the Cauchy–Schwarz inequality,

σ2J̃ − K̃2 = σ2E{λ2(F (Z1))} − (E{Z1λ(F (Z1))})2
(3.2)

≥ σ2E{λ2(F (Z1))} −E{Z2
1}E{λ2(F (Z1))} = 0,

with equality in (3.2) if and only if λ is proportional to F−1, which is not
possible since F−1(0) = −∞, F−1(1) = ∞ and λ is bounded on (0,1). Hence,

σ2J̃ − K̃2 > 0. K̃ =
∫ 1
0 F

−1(s)λ(s)ds is also greater than zero because F−1

and λ are strictly increasing functions on (0,1) and λ is odd about 1/2.
Without assumption A5, σ2L̃− K̃ is not necessarily greater than zero, how-
ever. If the density function f is differentiable, using integration by parts, it
can be shown that

L̃= E{f(Z1)λ
′(F (Z1))} = −

∫ ∞

−∞
f ′(s)λ(F (s))ds= −

∫ 1

0

f ′(F−1(s))

f(F−1(s))
λ(s)ds.
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Therefore, if Z1 ∼ N(0, σ2), then

σ2L̃= −σ2
∫ 1

0

f ′(F−1(s))

f(F−1(s))
λ(s)ds=

∫ 1

0
F−1(s)λ(s)ds= K̃

and so A5 does not hold if Z1 is Gaussian.

Remark 3. The asymptotic covariance matrix for φ̂R is a scalar mul-
tiple of n−1σ2

Γ
−1
p , the asymptotic covariance matrix for Gaussian likeli-

hood estimators of the parameters of the corresponding pth-order autore-
gressive process. The same property holds for LAD and ML estimators of
all-pass model parameters, as shown in [6] and [2], respectively. The LAD
estimators are quasi-maximum likelihood estimators which can be obtained
by maximizing the log-likelihood of an all-pass model with Laplace noise
(f(s) = exp(−

√
2|s|/σ)/(

√
2σ)). The appropriate scalar multiple is

Var |Z1|
2(2σ2f(0)−E|Z1|)2

(3.3)

in the LAD case ([6] contains an error in the calculation of the asymptotic
variance; see [3] for the correction) and

1

2

(

σ2
∫ ∞

−∞

(f ′(s))2

f(s)
ds− 1

)−1

(3.4)

in the ML case, while the multiple in (3.1) for R-estimation is

σ2J̃ − K̃2

2(σ2L̃− K̃)2
.(3.5)

Consequently, the asymptotic relative efficiency (ARE) for R to LAD is
obtained by dividing (3.3) by (3.5) and the ARE for R to ML is obtained
by dividing (3.4) by (3.5).

Remark 4. Consider the sequence of weight functions {λm} such that
λm(s) = 2π−1 arctan(m(s− 1/2)). It is straightforward to show that λm sat-
isfies assumptions A1 and A4 for all m > 0. If I{·} denotes the indica-
tor function and µ̃ := median{Z1}, then A5 is satisfied for large m when
2σ2f(µ̃)> E{−Z1I{Z1 < µ̃} +Z1I{Z1 > µ̃}}; this holds for many distribu-
tions, including the Laplace, logistic and Student’s t- (with degrees of free-
dom greater than two) distributions, and various asymmetric distributions
[0.4N(−1,1)+0.6N(2/3,32) is one example]. Because λm(s) converges point-

wise to −I{s < 1/2}+ I{s > 1/2} on (0,1) as m→∞, J̃m =
∫ 1
0 λ

2
m(s)ds→ 1

and, if Z1 has median zero, K̃m = E{Z1λm(F (Z1))} → E|Z1| and L̃m =
E{f(Z1)λ

′
m(F (Z1))}→ 2f(0). Hence, if Z1 has median zero,

σ2J̃m − K̃2
m

2(σ2L̃m − K̃m)2
→ σ2 −E2|Z1|

2(2σ2f(0)−E|Z1|)2
=

Var |Z1|
2(2σ2f(0)−E|Z1|)2
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and so R-estimation has virtually the same asymptotic efficiency as LAD
estimation when the weight function λm is used with m large. If Z1 has a
Laplace distribution, LAD estimation corresponds to ML estimation. In the
case of Laplace noise, therefore, R-estimation with weight function λm and
m large also has essentially the same asymptotic efficiency as ML estimation.

Remark 5. Under general conditions, it can be shown that (3.5) equals
(3.4) when the weight function is proportional to −f ′(F−1(s))/f(F−1(s)).
Thus, R-estimation has the same asymptotic efficiency as ML estimation
when an optimal weight function λf (s) ∝ −f ′(F−1(s))/f(F−1(s)) is used.
λf is also an optimal weight function in the case of R-estimation for linear
regression parameters (see, e.g., [15]). Note that if Z1 has a Laplace distri-
bution, then λf (s)∝−I{s < 1/2}+ I{s > 1/2} for s ∈ (0,1/2)∪ (1/2,1) (λf

does not exist at s= 1/2).
If Z1 has a logistic distribution, then f(s) = π/(

√
3σ) exp(−sπ/(

√
3σ))/[1+

exp(−sπ/(
√

3σ))]2 and so an optimal weight function λf is given by the
Wilcoxon weight function λ(s) = s − 1/2. For the Wilcoxon weights, as-
sumption A5 is satisfied when σ2E{f(Z1)}> E{Z1F (Z1)}, which holds for
the Laplace, logistic, Student’s t- and 0.4N(−1,1) + 0.6N(2/3,32) distribu-
tions, as well as many others. Columns 2 and 3 of Table 1 give values of ARE
for R (with Wilcoxon weights) to LAD and R (with Wilcoxon weights) to ML
for a number of distributions. For the logistic and Student’s t-distributions,
R-estimation is asymptotically much more efficient than LAD and essen-
tially as efficient as ML. Also, even though ML estimation is asymptotically
40% more efficient than R-estimation (with Wilcoxon weights) when the
noise distribution is Laplace, R-estimation can still be useful in this case
because D(·) tends to be smoother than

∑n−p
t=1 |zt(·)| and hence easier to

minimize. Figure 1 shows ML and R objective functions for a realization of
length n= 50 from an all-pass model with p= 1, φ01 = 0.5 and Laplace noise
with variance one. Observe that the ML objective function has many local
minima and thus could be difficult to minimize using numerical optimization
techniques.

Remark 6. Another weight function commonly used for R-estimation
is the van der Waerden weight function λ(s) = Φ−1(s), where Φ is the stan-
dard normal distribution function. Using results in [12], it can be shown
that, if f is absolutely continuous and almost everywhere differentiable with
0<

∫∞
−∞(f ′(s))2/f(s)ds <∞, then A5 holds for the van der Waerden weights

if and only if Z1 is non-Gaussian. So, although A4 does not hold because Φ−1
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Fig. 1. ML and R (with Wilcoxon weights) objective functions for a realization of length

n = 50 from an all-pass model with p = 1, φ01 = 0.5 and Laplace noise with variance one.

is unbounded on (0,1), a bounded weight function approximating Φ−1 which
does satisfy the assumptions can be found for a large class of non-Gaussian
noise distributions. However, since Φ−1 is optimal when Z1 ∼ N(0, σ2) and
the parameters of a Gaussian all-pass series are not identifiable, the van der
Waerden weights are not particularly useful for all-pass parameter estima-
tion. Column 4 of Table 1 gives the ARE’s for R (with Wilcoxon weights) to
R (with van der Waerden weights) for various noise distributions. The van
der Waerden weights are asymptotically superior to the Wilcoxon weights
only when the distribution is close to Gaussian.

3.2. Order selection. In practice, the true order r of an all-pass model is
usually unknown and must be estimated. In this section, we give an order
selection procedure that is analogous to using the partial autocorrelation
function to identify the order of an autoregressive model. First, note that

σ2J̃ − K̃2

2(σ2L̃− K̃)2
=

J̃ − (|φ0r|/σK̃z)
2

2(σ/|φ0r |L̃z − |φ0r|/σK̃z)2
,

where K̃z :=
∫ 1
0 F

−1
z (s)λ(s)ds, L̃z :=

∫ 1
0 fz(F

−1
z (s))λ′(s)ds and fz and Fz

are the density and distribution functions, respectively, for z1 = φ−1
0r Z1. Be-
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cause φ̂R
P→φ0,

ŝ :=

(

1

n

n−p
∑

t=1

z2
t (φ̂R)

)1/2
P→ (E{z2

1})1/2 =
σ

|φ0r|
(3.6)

and K̂z := n−1D(φ̂R)
P→ K̃z by Lemma A.6 in the Appendix. Corollary 3.1

provides a consistent estimator of L̃z .

Corollary 3.1. Consider the kernel density estimator of fz

f̂n(s) :=
1

bnn

n−p
∑

t=1

κ

(

s− zt(φ̂R)

bn

)

,(3.7)

where κ is a uniformly continuous, differentiable kernel density function

on R such that
∫ |s ln |s||1/2|κ′(s)|ds <∞ and κ′ is uniformly continuous

on R, and where the bandwidth sequence {bn} is chosen so that bn
P→ 0

and b2n
√
n

P→∞ as n→∞. If A1–A5 hold, then L̂z := n−1∑n−p
t=1 λ

′(t/(n−
p))f̂n(z(t)(φ̂R))

P→ L̃z.

Proof. If F̂n(s) := (n − p)−1∑n−p
t=1 I{zt(φ̂R) ≤ s}, F̂−1

n (s) := inf{x :

F̂n(x)≥ s} and

λ′n(s) := λ′
(

t

n− p

)

for s ∈
(

t− 1

n− p
,

t

n− p

]

, t= 1, . . . , n− p,

Table 1

AREs for R (with Wilcoxon weights) to LAD, R (with Wilcoxon weights) to ML and R

(with Wilcoxon weights) to R (with van der Waerden weights) for the Laplace

distribution, the logistic distribution and Student’s t-distribution with several different

degrees of freedom

ARE ARE ARE
Noise distribution (R to LAD) (R to ML) (R to R)

Laplace 0.600 0.600 1.026
logistic 1.976 1.000 1.049
t(3) 1.411 0.962 1.208
t(6) 2.068 0.997 1.083
t(9) 2.354 0.980 1.023
t(12) 2.510 0.964 0.990
t(15) 2.607 0.952 0.971
t(20) 2.707 0.937 0.953
t(30) 2.810 0.921 0.938
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then nL̂z/(n− p) =
∫ 1
0 f̂n(F̂−1

n (s))λ′n(s)ds. By the uniform continuity of λ′,
sups∈(0,1) |λ′n(s)− λ′(s)| → 0. Consequently, since sups∈(0,1) fz(F

−1
z (s))<∞

and sups∈(0,1) |λ′(s)|<∞, the proof is complete if

sup
s∈(0,1)

|f̂n(F̂−1
n (s))− fz(F

−1
z (s))|

≤ sup
s∈(0,1)

|f̂n(F̂−1
n (s))− fz(F̂

−1
n (s))|

(3.8)
+ sup

s∈(0,1)
|fz(F̂

−1
n (s))− fz(F

−1
z (s))|

is op(1). Because sups∈R |f̂n(s) − fz(s)| P→ 0 (for proof of this result, see
Lemma 16 on page 88 of [3]; a similar result is given in Theorem 3 of [21]),
the first term in (3.8) is op(1). We now consider the second term and use an
argument similar to one found in the proof of Lemma 4 in [18]. Note that

sups∈(0,1) |Fz(F̂
−1
n (s))− s| = sups∈R |F̂n(s)−Fz(s)| and, using the Glivenko–

Cantelli theorem, it can be shown that sups∈R |F̂n(s)−Fz(s)| P→ 0. Therefore,
because fz(F

−1
z (·)) is uniformly continuous on (0,1) and F−1

z (Fz(s)) = s for
all s ∈ R (since Fz is strictly increasing on R), we have

sup
s∈(0,1)

|fz(F̂
−1
n (s))− fz(F

−1
z (s))|

= sup
s∈(0,1)

|fz(F
−1
z [Fz{F̂−1

n (s)}])− fz(F
−1
z (s))| P→ 0.

�

It follows that

J̃ − (ŝ−1K̂z)
2

2(ŝL̂z − ŝ−1K̂z)2
P→ σ2J̃ − K̃2

2(σ2L̃− K̃)2
.(3.9)

Note that the Gaussian and the Student t-densities satisfy the conditions
for the kernel density function κ in Corollary 3.1.

We now give the following corollary for use in order selection.

Corollary 3.2. Assume A1–A5 hold. If the true order of the all-pass

model is r and the order of the fitted model is p > r, then n1/2φ̂p,R
d→

N(0, (σ2J̃ − K̃2)/[2(σ2L̃− K̃)2]).

Proof. By Problem 8.15 in [7], the pth diagonal element of Γ
−1
p is σ−2

if p > r, so the result follows from (3.1). �

A practical approach to order determination using a large sample is de-
scribed as follows:
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Table 2

Empirical means, standard deviations and percent coverages of

nominal 95% confidence intervals for R-estimates of all-pass model parameters.

The LAD-like score function λ(s) = 2π−1 arctan(500(s− 1/2)) and the Wilcoxon

score function λ(s) = s− 1/2 were used. The noise distribution is Laplace with variance

one

Asymptotic Empirical

std. dev. mean std. dev. % coverage
n mean (LAD/Wilcoxon) (LAD/Wilcoxon) (LAD/Wilcoxon) (LAD/Wilcoxon)

500 φ1 = 0.5 0.0275/0.0354 0.499/0.497 0.0332/0.0593 97.7/96.2
5000 φ1 = 0.5 0.0087/0.0112 0.500/0.499 0.0093/0.0112 97.9/96.0
500 φ1 = 0.3 0.0291/0.0374 0.299/0.299 0.0413/0.0444 96.5/94.9

φ2 = 0.4 0.0291/0.0374 0.397/0.392 0.0479/0.0599 97.6/95.4
5000 φ1 = 0.3 0.0092/0.0118 0.300/0.300 0.0101/0.0122 97.6/95.2

φ2 = 0.4 0.0092/0.0118 0.399/0.399 0.0099/0.0119 97.5/96.7

1. For some large P , fit all-pass models of order p, p = 1,2, . . . , P , via
R-estimation and obtain the pth coefficient, φ̂p,R, for each.

2. Let the model order r be the smallest order beyond which the esti-
mated coefficients are statistically insignificant; that is, r = min{0 ≤ p≤
P : |φ̂j,R| < 1.96τ̂ n−1/2 for j > p}, where τ̂ := ([J̃ − (ŝ−1K̂z)

2]/[2(ŝL̂z −
ŝ−1K̂z)

2])1/2 and the estimates ŝ, K̂z and L̂z are from the fitted P th-
order model.

4. Numerical results.

4.1. Simulation study. In this section we give the results of a simula-
tion study to assess the quality of the asymptotic approximations for fi-
nite samples. First, for each of 1000 replicates, we simulated all-pass data
and found φ̂R by minimizing D in (2.4). To reduce the possibility of the
optimizer getting trapped at local minima, we chose 1000 random start-
ing values for each replicate. We evaluated D at each of the 1000 candi-
date values and then reduced the collection of initial values to the twelve
with the smallest values of D. Optimized values were found using these
twelve initial values as starting points. The optimized value for which D
was smallest was chosen to be φ̂R. Confidence intervals for the elements of
φ0 were constructed using (3.1) and the estimator in (3.9). For the kernel
density estimator (3.7), we used the standard Gaussian kernel density func-
tion and, because of its recommendation in [22], page 48, we used bandwidth
bn = 0.9n−1/5 min{ŝ, IQR/1.34},where ŝ, defined in (3.6), is the sample stan-

dard deviation for {zt(φ̂R)} and IQR is the interquartile range for {zt(φ̂R)}.
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Results of these simulations appear in Tables 2 and 3. We show the em-
pirical means, standard deviations, and percent coverages of nominal 95%
confidence intervals for the R-estimates of all-pass model parameters. The
LAD-like score function λ(s) = 2π−1 arctan(500(s− 1/2)) and the Wilcoxon
score function λ(s) = s − 1/2 were used. Asymptotic means and standard
deviations were obtained using Theorem 3.1. Note that the R-estimates ap-
pear nearly unbiased and the confidence interval coverages are close to the
nominal 95% level. The asymptotic standard deviations tend to understate
the true variability of the estimates when n = 500, but are fairly accurate
when n= 5000. Normal probability plots show that the R-estimates are ap-
proximately normal, particularly when n= 5000. The quality of the asymp-
totic approximations for finite samples is similar for LAD and ML estimates
(see [2] and [6]).

We also ran simulations to assess the order selection procedure described
in Section 3.2. For each of 100 replicates, we simulated all-pass data and

Table 3

Empirical means, standard deviations and percent coverages of nominal 95%
confidence intervals for R-estimates of all-pass model parameters. The LAD-like

score function λ(s) = 2π−1 arctan(500(s − 1/2)) and the Wilcoxon score function

λ(s) = s− 1/2 were used. The noise distribution is Student’s t with three degrees of

freedom

Asymptotic Empirical

std. dev. mean std. dev. % coverage
n mean (LAD/Wilcoxon) (LAD/Wilcoxon) (LAD/Wilcoxon) (LAD/Wilcoxon)

500 φ1 = 0.5 0.0327/0.0279 0.499/0.498 0.0405/0.0331 95.8/96.2
5000 φ1 = 0.5 0.0103/0.0088 0.500/0.500 0.0110/0.0090 95.2/95.6
500 φ1 = 0.3 0.0346/0.0296 0.301/0.299 0.0403/0.0366 95.1/94.7

φ2 = 0.4 0.0346/0.0296 0.396/0.396 0.0418/0.0366 95.2/94.9
5000 φ1 = 0.3 0.0109/0.0093 0.300/0.300 0.0118/0.0095 94.0/95.4

φ2 = 0.4 0.0109/0.0093 0.400/0.400 0.0115/0.0097 94.6/95.1

Table 4

The frequencies for each estimate of model order r when P = 5 and the Wilcoxon scores

were used

Laplace noise t noise

n Model parameters 0 1 2 3 4 5 0 1 2 3 4 5

500 φ0 = 0.5 0 58 7 10 8 17 0 52 8 9 13 18
5000 (r = 1) 0 67 2 3 7 21 0 56 0 3 7 34
500 φ0 = (0.3,0.4)′ 0 0 69 1 16 14 0 0 57 13 16 14

5000 (r = 2) 0 0 82 5 5 8 0 0 81 5 6 8
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estimated the model order r using the procedure in Section 3.2 with P = 5
and Wilcoxon scores. Table 4 gives the frequencies for each estimate of r. In
all cases, the procedure appears to be fairly successful at identifying the true
value of r. Model orders less than r were never selected, so underestimating
r is clearly not a concern.

4.2. Deconvolution. Applications for all-pass models are not limited to
uncorrelated time series. As discussed in Section 1 and in [2], all-pass models
can also be used to identify and model noncausal and noninvertible ARMA
series. If, for example, a causal, invertible ARMA model is fit to a causal,
noninvertible series, the residuals follow a causal all-pass model of order r,
where r is the number of roots of the true moving average polynomial inside
the unit circle. Therefore, the order of noninvertibility of the ARMA, r, can
be determined by identifying the all-pass order of the residuals.

Consider the simulated water gun seismogram {Xt}1000
t=1 shown in Fig-

ure 2(a), where Xt =
∑

k βkZt−k, {βk} is the water gun wavelet sequence in
Figure 8(2) of [19] and {Zt} is a reflectivity sequence which was simulated
as i.i.d. noise from the Student t-distribution with five degrees of freedom.
Andrews, Davis and Breidt [2] modeled {Xt} as a possibly noninvertible
ARMA, using ML estimation for all-pass models to identify an appropriate
order of noninvertibility. The wavelet and reflectivity sequences were then
reconstructed from {Xt} using the fitted ARMA model. This deconvolution
procedure is of interest because, for an observed water gun seismogram, the
reflectivity sequence is unknown and corresponds to reflection coefficients
for layers of the Earth. In this section, we identify an appropriate order
of noninvertibility for {Xt} using R-estimation for all-pass models and we
compare the R-estimation results to ML results in [2].

Andrews, Davis and Breidt [2] first fit a causal, invertible ARMA(12,13)
model φ(B)Xt = θ(B)Wt to the simulated seismogram {Xt} using Gaussian

ML. The residuals from this fitted ARMA model are denoted {Ŵt}. From the

sample autocorrelation functions for {Ŵt}, {Ŵ 2
t } and {|Ŵt|} in Figure 2(b)–

(d), it appears that these ARMA residuals are uncorrelated but dependent,
suggesting that a causal, invertible model is inappropriate for {Xt}. Using
ML estimation and the Student t-density, a causal all-pass model of order
two was determined to be most suitable for {Ŵt} [2]. The ML estimates of

the all-pass model parameters are φ̂ML = (1.5286,−0.5908)′ , both with stan-
dard error 0.0338. Since the all-pass residuals appear independent, Andrews,
Davis and Breidt [2] concluded that a causal, noninvertible ARMA(12,13)
with two roots of the moving average polynomial inside the unit circle is an
appropriate model for {Xt}.

When the Wilcoxon weight function, the standard Gaussian kernel density
function and bandwidth bn = 0.9n−1/5 min{ŝ, IQR/1.34} are used, the order
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Fig. 2. (a) The simulated seismogram of length 1000, {Xt}, and the sample autocorre-

lation functions with bounds ±1.96/
√

1000 for (b) {Ŵt}, (c) {Ŵ 2
t } and (d) {|Ŵt|}.

selection procedure described in Section 3.2 also indicates that an all-pass

model of order two is appropriate for {Ŵt}. The R-estimates of the all-pass

model parameters are φ̂R = (1.5052,−0.5700)′ , both with standard error

0.0343. In Figure 3, we show the sample autocorrelation functions for the

squares and absolute values of {Ẑt}, the residuals from the all-pass model

fit to {Ŵt} using R-estimation; these all-pass residuals appear independent.

Therefore, in this example, the ML and R all-pass estimation results are

nearly identical, even though no specific distributional information was used

for R-estimation.
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Fig. 3. Diagnostics for the all-pass model of order two fit to the causal, invertible

ARMA residuals using R-estimation. The sample autocorrelation functions with bounds

±1.96/
√

1000 for (a) {Ẑ2
t } and (b) {|Ẑt|} are shown.

APPENDIX

This section contains proofs of the lemmas used to establish the results
of Section 3. We assume that assumptions A1–A5 hold throughout. First,
note that for j ∈ {1, . . . , p} and t∈ {1, . . . , n− p},

∂zt(φ)

∂φj
=

1

φ(B−1)
{Xt+p−j + zt+j(φ)}(A.1)

(see [2] for details). Evaluating (A.1) at the true value of φ and ignoring the
effect of recursion initialization, we have

∂zt(φ0)

∂φj
=

1

φ0(B−1)

{−φ0(B
−1)Bpzt+p−j

φ0(B)
+ zt+j(φ0)

}

≃ −zt−j

φ0(B)
+

zt+j

φ0(B−1)
,(A.2)

where the first term is an element of σ(zt−1, zt−2, . . .) and the second term
is an element of σ(zt+1, zt+2, . . .) because φ0(B) is a causal operator and
φ0(B

−1) is a purely noncausal operator. It follows that (A.2) is independent
of zt = φ−1

0r Zt. Thus, if Fz is the distribution function of z1 and gt(φ) :=
λ(Fz(zt))zt(φ), then for j ∈ {1, . . . , p},
∂gt(φ0)

∂φj
= λ(Fz(zt))

∂zt(φ0)

∂φj
≃ λ(Fz(zt))

{−zt−j

φ0(B)
+

zt+j

φ0(B−1)

}

=:
∂g∗t (φ0)

∂φj
.

The expected value of ∂g∗t (φ0)/∂φj is zero by the independence of its two
terms.
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We now compute the autocovariance function γ†(h) of the zero-mean,
stationary process {u′∂g∗t (φ0)/∂φ} for u ∈ R

p:

γ†(h) = E

{

u
′∂g

∗
t (φ0)

∂φ

(

∂g∗t+h(φ0)

∂φ

)′

u

}

= u
′[νjk(h)]

p
j,k=1u,

where

νjk(h) :=

{

2φ−2
0r J̃γ(j − k), if h= 0,

−ψ|h|−jψ|h|−kφ
−2
0r K̃

2, if h 6= 0,

and the ψl are given by
∑∞

l=0ψlz
l = 1/φ0(z) with ψl = 0 for l < 0. Thus,

γ†(0) + 2
∞
∑

h=1

γ†(h)

= u
′

{

[2φ−2
0r J̃γ(j − k)]pj,k=1 − 2φ−2

0r K̃
2

[

∞
∑

h=1

ψh−jψh−k

]p

j,k=1

}

u

= 2φ−2
0r (σ2J̃ − K̃2)u′σ−2

Γpu.

The preceding calculations lead directly to the following lemma.

Lemma A.1. As n→ ∞, n−1/2∑n−p
t=1 ∂gt(φ0)/∂φ

d→ N ∼ N(0,2φ−2
0r ×

{σ2J̃ − K̃2}σ−2
Γp).

Proof. Note that, for t ∈ {0, . . . , n− p− 1},

zn−p−t =
∞
∑

l=0

ψl(φ0(B
−1)zn−p−t+l) and

(A.3)

zn−p−t(φ0) =
t
∑

l=0

ψl(φ0(B
−1)zn−p−t+l).

Because there exist constants c > 0 and 0< d< 1 such that |ψl|< cdl for all
l ∈ {0,1, . . .} (see [7], Section 3.3), we have

n−p
∑

t=1

E

∣

∣

∣

∣

∂gt(φ0)

∂φj
− ∂g∗t (φ0)

∂φj

∣

∣

∣

∣

=
n−p
∑

t=1

E

∣

∣

∣

∣

λ(Fz(zt))

{

zt+j(φ0)

φ0(B−1)
− zt+j

φ0(B−1)

}∣

∣

∣

∣

=O(1)

for j ∈ {1, . . . , p}. Consequently, n−1/2∑n−p
t=1 [∂gt(φ0)/∂φ−∂g∗t (φ0)/∂φ]→ 0

in L1 and hence in probability.
Let u ∈ R

p. By the Cramér–Wold device, it suffices to show that n−1/2 ×
∑n−p

t=1 u
′∂g∗t (φ0)/∂φ

d→ u
′
N∼ N(0,2φ−2

0r {σ2J̃ − K̃2}u′σ−2
Γpu). Elements of

the infinite-order moving average stationary sequence {u′∂g∗t (φ0)/∂φ} can



18 B. ANDREWS, R. A. DAVIS AND F. J. BREIDT

be truncated to create a finite-order moving average stationary sequence.
By applying a central limit theorem ([7], Theorem 6.4.2) to each truncation
level, asymptotic normality can be deduced. The details are omitted. �

Now, consider the mixed partials of gt(φ). For j, k ∈ {1, . . . , p},
∂2zt(φ0)

∂φj ∂φk
=

1

φ2
0(B

−1)
{Xt+p+j−k +Xt+p+k−j + 2zt+j+k(φ0)}

≃ −zt+j−k − zt+k−j

φ0(B−1)φ0(B)
+

2zt+j+k

φ2
0(B

−1)

= −
∞
∑

m=0

∞
∑

ℓ=0

ψmψℓ(zt+j−k−ℓ+m + zt+k−j−ℓ+m) +
2zt+j+k

φ2
0(B

−1)
,

and so

∂2gt(φ0)

∂φj ∂φk
= λ(Fz(zt))

∂2zt(φ0)

∂φj ∂φk

≃ λ(Fz(zt))

{

−
∞
∑

m=0

∞
∑

ℓ=0

ψmψℓ(zt+j−k−ℓ+m + zt+k−j−ℓ+m)

(A.4)

+
2zt+j+k

φ2
0(B

−1)

}

=:
∂2g∗t (φ0)

∂φj ∂φk
.

(A.4) has expectation −2σ−2γ(j − k)
∫ 1
0 F

−1
z (s)λ(s)ds = −2|φ0r|−1K̃σ−2 ×

γ(j − k).

Lemma A.2. As n→ ∞, n−1∑n−p
t=1 ∂

2gt(φ0)/(∂φ∂φ′)
P→ −2|φ0r|−1 ×

K̃σ−2
Γp.

Proof. It can be shown that n−1∑n−p
t=1 [∂2gt(φ0)/(∂φ∂φ′) −

∂2g∗t (φ0)/(∂φ∂φ′)]→ 0 in L1 and in probability. Because (A.4) has expecta-

tion −2|φ0r|−1K̃σ−2γ(j−k), n−1∑n−p
t=1 ∂

2g∗t (φ0)/(∂φ∂φ′)
P→−2|φ0r|−1K̃σ−2

Γp

by the ergodic theorem. �

Lemma A.3. For any T ∈ (0,∞), as n→∞,

sup
‖u‖≤T

∣

∣

∣

∣

∣

n−1/2
n−p
∑

t=1

u
′
[

λ

(

Rt(φ0 + n−1/2
u)

n− p+ 1

)

− λ(Fz(zt))

]

∂zt(φ0)

∂φ

(A.5)

− 2|φ0r |−1L̃u
′
Γpu

∣

∣

∣

∣

∣

P→ 0.
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Proof. Observe that the left-hand side of (A.5) is bounded above by

sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n−p
∑

t=1

u
′λ′(Fz(zt))

∂zt(φ0)

∂φ

[

Rt(φ0 + n−1/2
u)

n− p+ 1
− Fz(zt)

]

(A.6)

− 2|φ0r|−1L̃u
′
Γpu

∣

∣

∣

∣

∣

+ sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n−p
∑

t=1

u
′[λ′(F ∗

t,n(u))− λ′(Fz(zt))]
∂zt(φ0)

∂φ

(A.7)

×
[

Rt(φ0 + n−1/2
u)

n− p+ 1
−Fz(zt)

]

∣

∣

∣

∣

∣

,

where F ∗
t,n(u) is between Fz(zt) and Rt(φ0 +n−1/2

u)/(n−p+1). If Fn(x) :=

n−1∑n−p
t=1 I{zt ≤ x}, an upper bound for (A.6) is

sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n−p
∑

t=1

u
′λ′(Fz(zt))

∂zt(φ0)

∂φ

(A.8)

×
[

Rt(φ0 + n−1/2
u)

n− p+ 1
− Fn

(

zt

(

φ0 +
u√
n

))]

∣

∣

∣

∣

∣

+ sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n−p
∑

t=1

u
′λ′(Fz(zt))

∂zt(φ0)

∂φ
(A.9)

×
[

Fn

(

zt

(

φ0 +
u√
n

))

−Fz

(

zt

(

φ0 +
u√
n

))]

∣

∣

∣

∣

∣

+ sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n−p
∑

t=1

u
′λ′(Fz(zt))

∂zt(φ0)

∂φ

×
[

Fz

(

zt

(

φ0 +
u√
n

))

−Fz(zt)

]

(A.10)

− 2|φ0r|−1L̃u
′
Γpu

∣

∣

∣

∣

∣

.

Because

sup
‖u‖≤T

1

n

n−p
∑

t=1

∣

∣

∣

∣

u
′λ′(Fz(zt))

∂zt(φ0)

∂φ

∣

∣

∣

∣

=Op(1)
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and, by Lemma 3 on page 55 of [3],

sup
‖u‖≤T,t∈{1,...,n−p}

√
n

∣

∣

∣

∣

Rt(φ0 + n−1/2
u)

n− p+ 1
−Fn

(

zt

(

φ0 +
u√
n

))∣

∣

∣

∣

P→ 0,(A.11)

(A.8) is op(1). Lemma 10 on page 76 of [3] establishes that (A.9) is op(1).
Finally,

sup
‖u‖≤T

∣

∣

∣

∣

1√
n

n−p
∑

t=1

u
′λ′(Fz(zt))

∂zt(φ0)

∂φ

[

Fz

(

zt

(

φ0 +
u√
n

))

−Fz(zt)

]

− 2|φ0r|−1L̃u
′
Γpu

∣

∣

∣

∣

∣

= sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n−p
∑

t=1

u
′λ′(Fz(zt))

∂zt(φ0)

∂φ
fz(z

∗
t,n(u))

(

zt

(

φ0 +
u√
n

)

− zt

)

− 2|φ0r|−1L̃u
′
Γpu

∣

∣

∣

∣

∣

≤ sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n−p
∑

t=1

u
′λ′(Fz(zt))

∂zt(φ0)

∂φ
fz(z

∗
t,n(u))(zt(φ0)− zt)

∣

∣

∣

∣

∣

+ sup
‖u‖≤T

∣

∣

∣

∣

∣

1

n

n−p
∑

t=1

λ′(Fz(zt))fz(z
∗
t,n(u))

(

u
′∂zt(φ0)

∂φ

)2

− 2|φ0r|−1L̃u
′
Γpu

∣

∣

∣

∣

∣

+ sup
‖u‖≤T

∣

∣

∣

∣

∣

1

2n
√
n

n−p
∑

t=1

λ′(Fz(zt))fz(z
∗
t,n(u))u′ ∂zt(φ0)

∂φ
u
′∂

2zt(φ
∗
t,n(u))

∂φ∂φ′ u

∣

∣

∣

∣

∣

,

where fz is the density function for z1, z
∗
t,n(u) is between zt and zt(φ0 +

n−1/2
u) and φ∗

t,n(u) is between φ0 and φ0 + n−1/2
u. From (A.3), the first

term on the right-hand side is op(1) and, since there exists a geometrically
decaying, nonnegative, real-valued sequence {π̈k}∞k=−∞ such that

sup
‖u‖≤T

∣

∣

∣

∣

u
′∂

2zt(φ
∗
t,n(u))

∂φ∂φ′ u

∣

∣

∣

∣

≤
∞
∑

k=−∞

π̈k|zt−k| ∀t∈ {1, . . . , n− p}

for all n sufficiently large ([7], Section 3.3), the third term is also op(1).
Using the uniform continuity of fz, the second term equals

sup
‖u‖≤T

∣

∣

∣

∣

∣

1

n

n−p
∑

t=1

λ′(Fz(zt))fz(zt)

(

u
′ ∂zt(φ0)

∂φ

)2

− 2φ−2
0r

(
∫ 1

0
fz(F

−1
z (s))λ′(s)ds

)

u
′
Γpu

∣

∣

∣

∣

∣

+ op(1),
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which is op(1) by the ergodic theorem. Therefore, (A.10) and, consequently,
(A.6) are op(1). Similarly, using the uniform continuity of λ′, it can be shown
that (A.7) is op(1). �

Lemma A.4. For any T ∈ (0,∞), as n→∞,

sup
‖u‖,‖v‖≤T

∣

∣

∣

∣

∣

n−1
n−p
∑

t=1

u
′
[

λ

(

Rt(φ0 + n−1/2
v)

n− p+ 1

)

− λ(Fz(zt))

]

∂2zt(φ0)

∂φ∂φ′ u

∣

∣

∣

∣

∣

P→ 0.

Proof. Note that because Fz is a continuous distribution function, it is
also uniformly continuous on R. Using (A.11), the Glivenko–Cantelli theo-
rem and the uniform continuity of Fz , for any ε, η > 0, it can be shown that
there exists an integer m such that

P

(

sup
‖v‖≤T,t∈{1,...,n−p−m}

∣

∣

∣

∣

Rt(φ0 + n−1/2
v)

n− p+ 1
− Fz(zt)

∣

∣

∣

∣

> η

)

≤ P

(

sup
‖v‖≤T,t∈{1,...,n−p}

∣

∣

∣

∣

Rt(φ0 + n−1/2
v)

n− p+ 1
− Fn

(

zt

(

φ0 +
v√
n

))∣

∣

∣

∣

>
η

3

)

+ P

(

sup
x∈R

|Fn(x)−Fz(x)|>
η

3

)

+ P

(

sup
‖v‖≤T,t∈{1,...,n−p−m}

∣

∣

∣

∣

Fz

(

zt

(

φ0 +
v√
n

))

− Fz(zt)

∣

∣

∣

∣

>
η

3

)

is less than ε for all n sufficiently large. Hence,

sup
‖u‖,‖v‖≤T

∣

∣

∣

∣

∣

1

n

n−p
∑

t=1

u
′
[

λ

(

Rt(φ0 + n−1/2
v)

n− p+ 1

)

− λ(Fz(zt))

]

∂2zt(φ0)

∂φ∂φ′ u

∣

∣

∣

∣

∣

= sup
‖u‖,‖v‖≤T

∣

∣

∣

∣

∣

1

n

n−p
∑

t=1

u
′λ′(F ∗

t,n(v))
∂2zt(φ0)

∂φ∂φ′

[

Rt(φ0 + n−1/2
v)

n− p+ 1
−Fz(zt)

]

u

∣

∣

∣

∣

∣

P→ 0,

where F ∗
t,n(v) is between Fz(zt) and Rt(φ0 + n−1/2

v)/(n− p+ 1), since

sup
‖u‖,‖v‖≤T

1

n

n−p
∑

t=1

∣

∣

∣

∣

u
′λ′(F ∗

t,n(v))
∂2zt(φ0)

∂φ∂φ′ u

∣

∣

∣

∣

=Op(1).
�

For u ∈ R
p and δ1, δ2 ∈ [0,1], let

Un(u, δ1, δ2) =
n−p
∑

t=1

λ

(

Rt(φ0 + n−1/2δ1u)

n− p+ 1

)[

zt

(

φ0 +
δ2u√
n

)

− zt

(

φ0 +
δ1u√
n

)]
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and

Vn(u, δ1, δ2) =
n−p
∑

t=1

λ

(

Rt(φ0 + n−1/2δ2u)

n− p+ 1

)[

zt

(

φ0 +
δ2u√
n

)

− zt

(

φ0 +
δ1u√
n

)]

.

Using Taylor series expansions,

Un(u, δ1, δ2)

=
n−p
∑

t=1

λ

(

Rt(φ0 + n−1/2δ1u)

n− p+ 1

)

×
{[

zt

(

φ0 +
δ2u√
n

)

− zt(φ0)

]

−
[

zt

(

φ0 +
δ1u√
n

)

− zt(φ0)

]}

=
δ2 − δ1√

n

n−p
∑

t=1

u
′λ

(

Rt(φ0 + n−1/2δ1u)

n− p+ 1

)

∂zt(φ0)

∂φ

+
1

2

δ22 − δ21
n

n−p
∑

t=1

u
′λ

(

Rt(φ0 + n−1/2δ1u)

n− p+ 1

)

∂2zt(φ0)

∂φ∂φ′ u

+
1

2

δ22
n

n−p
∑

t=1

u
′λ

(

Rt(φ0 + n−1/2δ1u)

n− p+ 1

)

×
[

∂2zt(φ
∗
n(u, δ1, δ2))

∂φ∂φ′ − ∂2zt(φ0)

∂φ∂φ′

]

u(A.12)

− 1

2

δ21
n

n−p
∑

t=1

u
′λ

(

Rt(φ0 + n−1/2δ1u)

n− p+ 1

)

×
[

∂2zt(φ
∗
n(u, δ1, δ1))

∂φ∂φ′ − ∂2zt(φ0)

∂φ∂φ′

]

u

and, similarly,

Vn(u, δ1, δ2) =
δ2 − δ1√

n

n−p
∑

t=1

u
′λ

(

Rt(φ0 + n−1/2δ2u)

n− p+ 1

)

∂zt(φ0)

∂φ

+
1

2

δ22 − δ21
n

n−p
∑

t=1

u
′λ

(

Rt(φ0 + n−1/2δ2u)

n− p+ 1

)

∂2zt(φ0)

∂φ∂φ′ u

+
1

2

δ22
n

n−p
∑

t=1

u
′λ

(

Rt(φ0 + n−1/2δ2u)

n− p+ 1

)

(A.13)

×
[

∂2zt(φ
∗
n(u, δ2, δ2))

∂φ∂φ′ − ∂2zt(φ0)

∂φ∂φ′

]

u
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− 1

2

δ21
n

n−p
∑

t=1

u
′λ

(

Rt(φ0 + n−1/2δ2u)

n− p+ 1

)

×
[

∂2zt(φ
∗
n(u, δ2, δ1))

∂φ∂φ′ − ∂2zt(φ0)

∂φ∂φ′

]

u,

where the values of φ∗
n(u, ·, ·) lie between φ0 and φ0 + n−1/2

u.

Lemma A.5. For u ∈ R
p, let Sn(u) = D(φ0 + n−1/2

u) − D(φ0) and

S(u) = u
′
N+ |φ0r|−1(σ2L̃−K̃)u′σ−2

Γpu, where N∼N(0,2φ−2
0r {σ2J̃−K̃2}σ−2

Γp).

Then Sn(·) d→ S(·) on C(Rp), the space of continuous functions on R
p where

convergence is equivalent to uniform convergence on every compact set.

Proof. Let u ∈ R
p and suppose that m is any positive integer. Because

D(φ0 + n−1/2
u)−D(φ0) =

m
∑

k=1

[

D

(

φ0 +
ku

m
√
n

)

−D

(

φ0 +
(k− 1)u

m
√
n

)]

,

we have

m
∑

k=1

Un

(

u,
k− 1

m
,
k

m

)

(A.14)

≤D(φ0 + n−1/2
u)−D(φ0)≤

m
∑

k=1

Vn

(

u,
k− 1

m
,
k

m

)

by Theorem 2.1. Using (A.12), (A.13) and Lemmas A.1, A.2, A.3 and A.4,
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d→

























































1

m
u
′
N− |φ0r|−1
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1

m

)2

−
(

0

m

)2]

K̃u
′σ−2

Γpu

1

m
u
′
N + |φ0r|−1

(

2
1

m2
σ2L̃−

[(

2

m

)2

−
(

1

m

)2]

K̃

)

u
′σ−2

Γpu

...
1

m
u
′
N + |φ0r|−1

(

2
m− 1

m2
σ2L̃−

[(

m

m

)2

−
(

m− 1

m

)2]

K̃

)

u
′σ−2

Γpu

1

m
u
′
N + |φ0r|−1

(

2
1

m2
σ2L̃−

[(

1

m

)2

−
(

0

m

)2]

K̃

)

u
′σ−2

Γpu

1

m
u
′
N + |φ0r|−1

(

2
2

m2
σ2L̃−

[(

2

m

)2

−
(

1

m

)2]

K̃

)

u
′σ−2

Γpu

...
1

m
u
′
N + |φ0r|−1

(

2
m

m2
σ2L̃−

[(

m

m

)2

−
(

m− 1

m

)2]

K̃

)

u
′σ−2

Γpu

























































on R
2m, since

sup
‖u‖,‖v‖≤T

1

n

n−p
∑

t=1

∣

∣

∣

∣

u
′
(

∂2zt(φ0 + n−1/2
v)

∂φ∂φ′ − ∂2zt(φ0)

∂φ∂φ′

)

u

∣

∣

∣

∣

P→ 0

for any T > 0 and sups∈(0,1) |λ(s)| < ∞ by the uniform continuity of λ′.
Hence,












m
∑

k=1

Un

(

u,
k− 1

m
,
k

m

)

m
∑

k=1

Vn

(

u,
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m
,
k

m
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d→









u
′
N + |φ0r|−1

(

m− 1

m
σ2L̃− K̃

)

u
′σ−2

Γpu

u
′
N + |φ0r|−1

(

m+ 1

m
σ2L̃− K̃

)

u
′σ−2

Γpu









on R
2. For any ε > 0, there exists an integer m sufficiently large so that

u
′
N + |φ0r|−1

(

m− 1

m
σ2L̃− K̃

)

u
′σ−2

Γpu

and

u
′
N + |φ0r|−1

(

m+ 1

m
σ2L̃− K̃

)

u
′σ−2

Γpu

are both in an ε-neighborhood of S(u) = u
′
N+ |φ0r|−1(σ2L̃− K̃)u′σ−2

Γpu.

Thus, for any u ∈ R
p, Sn(u)

d→ S(u). It can be shown similarly that all
finite-dimensional distributions of Sn(·) converge to those of S(·).

Also using (A.14), it can be shown that

lim
δ→0+

lim sup
n→∞

P

(

sup
u,v∈K,‖u−v‖≤δ

|Sn(u)− Sn(v)|> η

)

= 0



RANK ESTIMATION FOR ALL-PASS MODELS 25

for any η > 0 and any compact subset K ⊂ R
p (see [3], pages 84–86). It

follows that Sn(·) must be tight on C(K) and, therefore, because compact

K ⊂ R
p is arbitrary, Sn(·) d→ S(·) on C(Rp) by Theorem 7.1 in [4]. �

Lemma A.6. If ε > 0 is sufficiently small so that φ forms a causal poly-

nomial for all φ ∈ Φ := {φ ∈ R
p :‖φ − φ0‖ ≤ ε}, then n−1∑n−p

t=1 z
2
t (φ)

a.s.→
E{z̃2

1(φ)} and n−1D(φ)
a.s.→

∫ 1
0 F

−1
z̃(φ)(s)λ(s)ds uniformly on Φ, where z̃t(φ) :=

−φ−1(B−1)φ(B)Xt+p and Fz̃(φ)(·) is the distribution function for z̃1(φ).

Proof. For any φ ∈ Φ, n−1∑n−p
t=1 z

2
t (φ)

a.s.→ E{z̃2
1(φ)} and n−1D(φ)

a.s.→
E{λ(Fz̃(φ)(z̃1(φ)))z̃1(φ)} =

∫ 1
0 F

−1
z̃(φ)(s)λ(s)ds, by the ergodic theorem. There-

fore, since n−1∑n−p
t=1 z

2
t (·) and n−1D(·) are equicontinuous and uniformly

bounded on Φ almost surely (see Lemma 15 on page 86 of [3]; similar re-
sults are obtained in the proof of Proposition 1 in [6]), the lemma follows
by the Arzelà–Ascoli theorem. �

Acknowledgments. We would like to thank two reviewers and an Asso-
ciate Editor for their helpful comments. In particular, we are grateful to
a reviewer for suggestions that led to Remark 6. We would also like to
thank Professor Keh-Shin Lii for supplying the water gun wavelet used in
Section 4.2. The work reported here was developed in part under STAR Re-
search Assistance Agreement CR-829095 awarded by the U.S. Environmen-
tal Protection Agency (EPA) to Colorado State University. This manuscript
has not been formally reviewed by EPA. The views expressed here are solely
those of the authors. EPA does not endorse any products or commercial
services mentioned in this report.

REFERENCES

[1] Allal, J., Kaaouachi, A. and Paindaveine, D. (2001). R-estimation for ARMA
models. J. Nonparametr. Statist. 13 815–831. MR1893753

[2] Andrews, B., Davis, R. A. and Breidt, F. J. (2006). Maximum likelihood es-
timation for all-pass time series models. J. Multivariate Anal. 97 1638–1659.
MR2256234

[3] Andrews, M. E. (2003). Parameter estimation for all-pass time series models. Ph.D.
dissertation, Dept. Statistics, Colorado State Univ.

[4] Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New
York. MR1700749

[5] Breidt, F. J. and Davis, R. A. (1992). Time-reversibility, identifiability and in-
dependence of innovations for stationary time series. J. Time Ser. Anal. 13
377–390. MR1183152

[6] Breidt, F. J., Davis, R. A. and Trindade, A. A. (2001). Least absolute deviation
estimation for all-pass time series models. Ann. Statist. 29 919–946. MR1869234

[7] Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd
ed. Springer, New York. MR1093459

http://www.ams.org/mathscinet-getitem?mr=1893753
http://www.ams.org/mathscinet-getitem?mr=2256234
http://www.ams.org/mathscinet-getitem?mr=1700749
http://www.ams.org/mathscinet-getitem?mr=1183152
http://www.ams.org/mathscinet-getitem?mr=1869234
http://www.ams.org/mathscinet-getitem?mr=1093459


26 B. ANDREWS, R. A. DAVIS AND F. J. BREIDT

[8] Chi, C.-Y. and Kung, J.-Y. (1995). A new identification algorithm for allpass sys-
tems by higher-order statistics. Signal Processing 41 239–256.

[9] Chien, H.-M., Yang, H.-L. and Chi, C.-Y. (1997). Parametric cumulant based
phase estimation of 1-D and 2-D nonminimum phase systems by allpass filtering.
IEEE Trans. Signal Processing 45 1742–1762.

[10] Davis, R. A., Knight, K. and Liu, J. (1992). M -estimation for autoregressions with
infinite variance. Stochastic Process. Appl. 40 145–180. MR1145464

[11] Giannakis, G. B. and Swami, A. (1990). On estimating noncausal nonminimum
phase ARMA models of non-Gaussian processes. IEEE Trans. Acoust. Speech

Signal Process. 38 478–495. MR1045718
[12] Hallin, M. (1994). On the Pitman non-admissibility of correlogram-based methods.

J. Time Ser. Anal. 15 607–611. MR1312324
[13] Huang, J. and Pawitan, Y. (2000). Quasi-likelihood estimation of non-invertible

moving average processes. Scand. J. Statist. 27 689–702. MR1804170
[14] Jaeckel, L. A. (1972). Estimating regression coefficients by minimizing the disper-

sion of the residuals. Ann. Math. Statist. 43 1449–1458. MR0348930
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